|
|
[ RFC2947 | RFC Index | Protocol Standards | Linux Docs | FreeBSD Docs | RFC2949 ]
Network Working Group J. Altman
Request for Comments: 2948 Columbia University
Category: Standards Track September 2000
Telnet Encryption: DES3 64 bit Output Feedback
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2000). All Rights Reserved.
Abstract
This document specifies how to use the Triple-DES (data encryption
standard) encryption algorithm in output feedback mode with the
telnet encryption option.
1. Command Names and Codes
Encryption Type
DES3_OFB64 4
Suboption Commands
OFB64_IV 1
OFB64_IV_OK 2
OFB64_IV_BAD 3
2. Command Meanings
IAC SB ENCRYPT IS DES3_OFB64 OFB64_IV <initial vector> IAC SE
The sender of this command generates a random 8 byte initial
vector, and sends it to the other side of the connection using the
OFB64_IV command. The initial vector is sent in clear text. Only
the side of the connection that is WILL ENCRYPT may send the
OFB64_IV command.
Altman Standards Track [Page 1]
RFC 2948 DES3 64 bit Output Feedback September 2000
IAC SB ENCRYPT REPLY DES3_OFB64 OFB64_IV_OK IAC SE
IAC SB ENCRYPT REPLY DES3_OFB64 OFB64_IV_BAD IAC SE
The sender of these commands either accepts or rejects the initial
vector received in a OFB64_IV command. Only the side of the
connection that is DO ENCRYPT may send the OFB64_IV_OK and
OFB64_IV_BAD commands. The OFB64_IV_OK command MUST be sent for
backwards compatibility with existing implementations; there
really isn't any reason why a sender would need to send the
OFB64_IV_BAD command except in the case of a protocol violation
where the IV sent was not of the correct length (i.e., 8 bytes).
3. Implementation Rules
Once a OFB64_IV_OK command has been received, the WILL ENCRYPT side
of the connection should do keyid negotiation using the ENC_KEYID
command. Once the keyid negotiation has successfully identified a
common keyid, then START and END commands may be sent by the side of
the connection that is WILL ENCRYPT. Data will be encrypted using
the DES3 64 bit Output Feedback algorithm.
If encryption (decryption) is turned off and back on again, and the
same keyid is used when re-starting the encryption (decryption), the
intervening clear text must not change the state of the encryption
(decryption) machine.
If a START command is sent (received) with a different keyid, the
encryption (decryption) machine must be re-initialized immediately
following the end of the START command with the new key and the
initial vector sent (received) in the last OFB64_IV command.
If a new OFB64_IV command is sent (received), and encryption
(decryption) is enabled, the encryption (decryption) machine must be
re-initialized immediately following the end of the OFB64_IV command
with the new initial vector, and the keyid sent (received) in the
last START command.
If encryption (decryption) is not enabled when a OFB64_IV command is
sent (received), the encryption (decryption) machine must be re-
initialized after the next START command, with the keyid sent
(received) in that START command, and the initial vector sent
(received) in this OFB64_IV command.
Altman Standards Track [Page 2]
RFC 2948 DES3 64 bit Output Feedback September 2000
4. Algorithm
DES3 64 bit Output Feedback
key1 key2 key3
| | |
v v v
+-------+ +-------+ +-------+
+->| DES-e |->| DES-d |->| DES-e |-- +
| +-------+ +-------+ +-------+ |
+------------------------------------+
v
INPUT ------------------------------------->(+) ----> DATA
Given:
iV: Initial vector, 64 bits (8 bytes) long.
Dn: the nth chunk of 64 bits (8 bytes) of data to
encrypt (decrypt).
On: the nth chunk of 64 bits (8 bytes) of encrypted
(decrypted) output.
V0 = DES-e(DES-d(DES-e(iV, key1),key2),key3)
V(n+1) = DES-e(DES-d(DES-e(Vn, key1),key2),key3)
On = Dn ^ Vn
5. Integration with the AUTHENTICATION telnet option
As noted in the telnet ENCRYPTION option specifications, a keyid
value of zero indicates the default encryption key, as might be
derived from the telnet AUTHENTICATION option. If the default
encryption key negotiated as a result of the telnet AUTHENTICATION
option contains less than 16 bytes, then the DES3_OFB64 option must
not be offered or used as a valid telnet encryption option.
The following rules are to be followed for creating three DES
encryption keys based upon the available encrypt key data:
keys_to_use = bytes of key data / DES block size (8 bytes)
where the keys are labeled "key1" through "key6" with "key1" being
the first 8 bytes; "key2" the second 8 bytes; ... and "key6" being
sixth 8 bytes (if available).
When two keys are available:
. data sent from the server is encrypted with key1, decrypted with
key2, and encrypted with key1;
Altman Standards Track [Page 3]
RFC 2948 DES3 64 bit Output Feedback September 2000
. data sent from the client is encrypted with key2, decrypted with
key1, and encrypted with key2
When three keys are available:
. data sent from the server is encrypted with key1, decrypted with
key2, and encrypted with key3;
. data sent from the client is encrypted with key2, decrypted with
key3, and encrypted with key1
When four keys are available:
. data sent from the server is encrypted with key1, decrypted with
key2, and encrypted with key3;
. data sent from the client is encrypted with key2, decrypted with
key4, and encrypted with key1
When five keys are available:
. data sent from the server is encrypted with key1, decrypted with
key2, and encrypted with key3;
. data sent from the client is encrypted with key2, decrypted with
key4, and encrypted with key5
When six keys are available:
. data sent from the server is encrypted with key1, decrypted with
key2, and encrypted with key3;
. data sent from the client is encrypted with key4, decrypted with
key5, and encrypted with key6
In all cases, the keys used by DES3_OFB64 must have their parity
corrected after they are determined using the above algorithm.
Note that the above algorithm assumes that it is safe to use a non-
DES key (or part of a non-DES key) as a DES key. This is not
necessarily true of all cipher systems, but we specify this behaviour
as the default since it is true for most authentication systems in
popular use today, and for compatibility with existing
implementations. New telnet AUTHENTICATION mechanisms may specify
alternative methods for determining the keys to be used for this
cipher suite in their specification, if the session key negotiated by
that authentication mechanism is not a DES key and and where this
algorithm may not be safely used.
Altman Standards Track [Page 4]
RFC 2948 DES3 64 bit Output Feedback September 2000 6. Security Considerations Encryption using Output Feedback does not ensure data integrity; an active attacker may be able to substitute text, if he can predict the clear-text that was being transmitted. The tradeoff here is that adding a message authentication code (MAC) will significantly increase the number of bytes needed to send a single character in the telnet protocol, which will impact performance on slow (i.e. dialup) links. This option was originally drafted back when CPU speeds where not necessarily fast enough to do allow use of CFB. Since then, CPU's have gotten much faster. Given the inherent weaknesses in Output Feedback mode, perhaps it should be deprecated in favor of CFB modes? 7. Acknowledgments This document was based on the "Telnet Encryption: DES 64 bit Output Feedback" document originally written by Dave Borman of Cray Research with the assistance of the IETF Telnet Working Group. Author's Address Jeffrey Altman, Editor Columbia University 612 West 115th Street Room 716 New York NY 10025 USA Phone: +1 (212) 854-1344 EMail: jaltman@columbia.edu Altman Standards Track [Page 5]
RFC 2948 DES3 64 bit Output Feedback September 2000 Full Copyright Statement Copyright (C) The Internet Society (2000). All Rights Reserved. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Acknowledgement Funding for the RFC Editor function is currently provided by the Internet Society. Altman Standards Track [Page 6]
Hosting by: Hurra Communications Ltd.
Generated: 2007-01-26 17:59:28